

Using Lean Six Sigma to improve Efficiency in Production and Services Operations

Adnan Rafique Ahmed

Using Lean Six Sigma to improve Efficiency in Production and Services Operations

Adnan Rafique Ahmed

What is Lean Six Sigma?

Lean Six Sigma is a Problem-Solving methodology which focus on reducing waste (lean) and reducing variation (six sigma) using Five phases to make process effective and efficient.

- 1. Define Understand the problem
- 2. Measure Collect reliable data
- 3. Analyze Identify the root cause
- 4. Improve Develop ideas for improvement
- 5. Control Keep improvements permanent

Lean Six Sigma?

Reduces waste by streamlining a process making it efficient

6σ six sigma

Controls variability by effectively solving problems

Lean accelerates SIX SIGMA: Solving problems and improving processes is faster and more efficient

hσ

LEAN SIX SIGMA

improvement

What can be done using LSS approach?

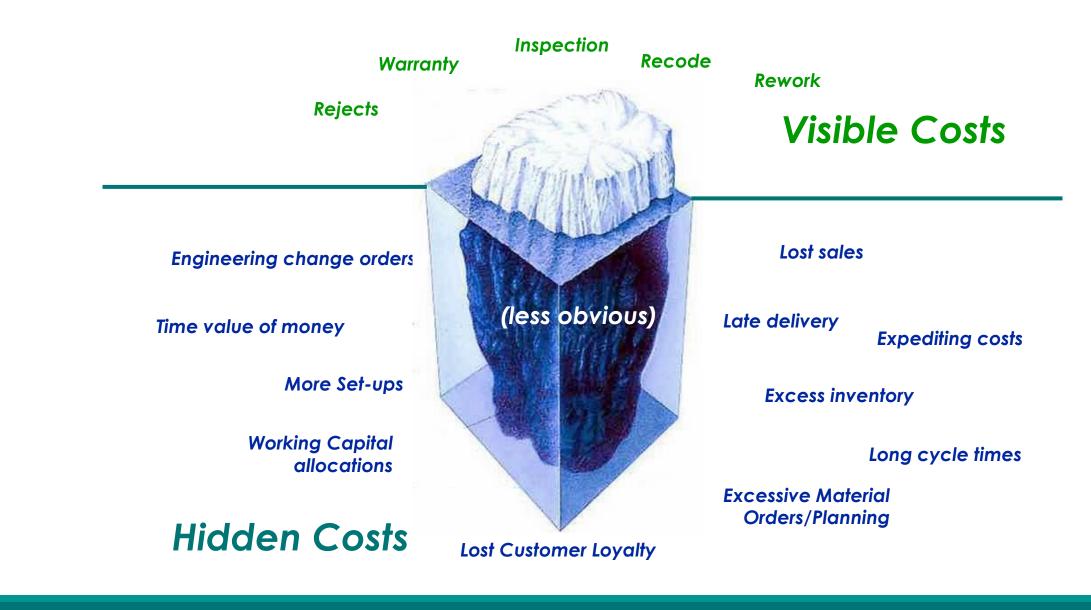
Sources of Waste

	Definition	Examples
Transportation	Transportation (also knows as Touches) is the unnecessary movement of materials around an organization	 Carrying large quantities in and out of storage facilities Redundant movement of materials
Inventory	Inventory includes any materials or supplies in excess of the appropriate time.	 Purchasing excess inventory Long Cycle Times for certain parts, or suppliers
Motion	Motion is any movement of people that does not add value to the product or service.	 Inefficient workplace organization Inefficient placement of frequently used supplies, tools, etc.
Waiting	Waiting is a prevalent Waste and involves waiting for man, machine, materials, information etc.	 Excessive Cycle Time between process steps High amount of wait time vs. work time
Overprocessing	Overprocessing is an effort that doesn't add value to the product or service from customer's perspective	Re-work loops or work-around Redundant process steps
Overproduction	Overproduction is making more, earlier, or faster than the next process needs it	Error that occur over and overCustomer dissatisfaction in a process
Defects	Defects are information, products, and services that are inaccurate and/or incomplete.	Error that occur over and overCustomer dissatisfaction in a process

Data Based Methodology

- INFERENTIAL STATISTICS
- STATISTICAL ANALYSIS
- CHARTING & GRAPHING
- BRAINSTORMING
- INTUITION

Sigma Levels


Yield	ΡΡΜΟ	COPQ	Sigma	
99.9997%	3.4	<10%	6	World Class Benchmarks
99.976%	233	10-15%	5	10% GAP
99.4%	6,210	15-20%	4	V Industry Average
93%	66,807	20-30%	3	10% GAP
65%	308,537	30- 40%	2	Non Competitive
50%	500,000	>40%	1	

Source: Journal for Quality and Participation, Strategy and Planning Analysis

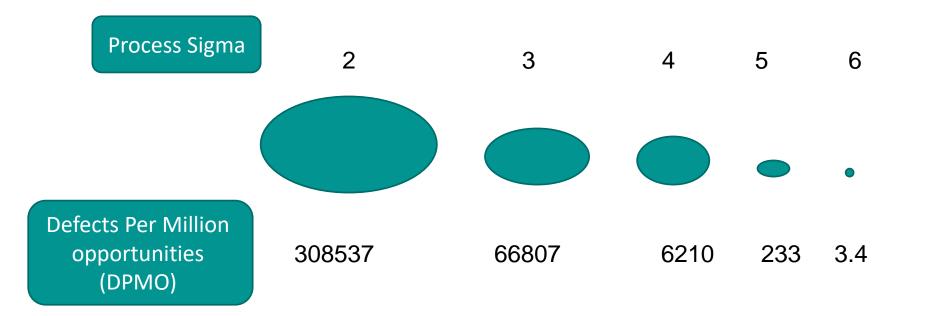
What does 20 - 40% of Sales represent to your Organization?

Cost of Poor Quality

Cost of Quality				
Cost of Conformance	Cost of Nonconformance			
(Money spent during the	(Money spent during and after the			
project to avoid failure)	project because of failures)			
 Prevention Costs (Build a	 Internal Failure Costs (Failures			
quality product):	found by the project):			
 Training Document Processes Equipment Time to do it right 	Rework Scrap			
2. Appraisal Costs: Assessing	2. External Failure Costs (Failures			
the Quality):	found by the customer):			
 Testing Destructive testing loss Inspections 	 Liabilities Warranty Work Lost Business 			

Problem Statement

Poor Example:

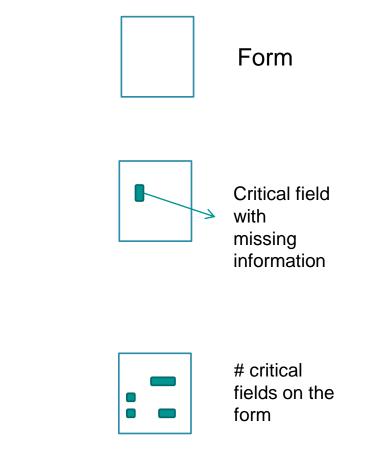

Because our customers are dissatisfied with our service, they are late paying their bills.

Improved Example:

In the last 2 years (when) 20% of our customers in ABC process (where) were over 60 days late (what) paying our invoices. This negatively affects our operating cash flow (how it impacts or consequences) by SR 2 Million.

What is 6 Sigma ?

A measurement scale which compares the output of a process to the customer's requirements



Compute Process Sigma

Unit: The item produced or processed

Defect: any event that does not meet the specification of a CTQ as defined by the customer.

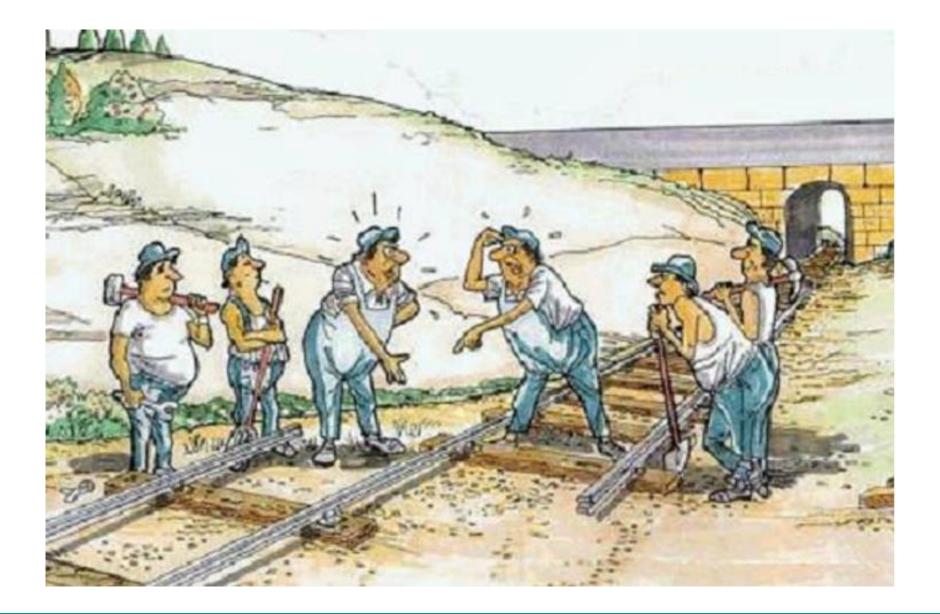
Defect Opportunity: Any event which can be measured that provides a chance of not meeting a customer requirement (Specification)

Calculate process sigma : formula

Calculate the number of Defects per million Opportunities

(No of Defects)

DPMO =


X 1 000 000

No of Units X No of Opportunities

In the sigma table, look at the Sigma value relating to the DPMO determined

Conversion Table						
	Long term Yield	Process Sigma	Defects per 1,000,000	Long Term Yield	Process Sigma	Defects per 1,000,000
	99.99966%	6.0	3.4	93.320 %	3	66,800
	99.9995%	5.9	5	90.920%	2.9	80,800
	99.9992%	5.8	8	90.320%	2.8	96,800
	99.9990%	5.7	10	88.50%	2.7	115,000
	99.9980%	5.6	20	86.50%	2.6	135,000
	99.9970%	5.5	30	84.20%	2.5	158,000
	99.9960%	5.4	40	81.60%	2.4	184,000
	99.9930%	5.3	70	78.80%	2.3	212,000
	99.9900%	5.2	100	75.8%	2.2	242,000
	99.9850%	5.1	150	72.6%	2.1	274,000
	99.9770%	5.0	230	69.2%	2	308,000
	99.670%	4.9	330	65.6%	1.9	344,000
	99.520%	4.8	480	61.80%	1.8	382,000
	99.9320%	4.7	680	58.00%	1.7	420,000
	99.9040%	4.6	960	54.00%	1.6	460,000
	99.8650%	4.5	1350	50%	1.5	500,000
	99.8140%	4.4	1860	46%	1.4	540,000
	99.7450%	4.3	2550	43%	1.3	570,000
	99.6540%	4.2	3460	39%	1.2	610,000
	99.5340%	4.1	4660	35%	1.1	650,000
	99.3790%	4.0	6210	31%	1	690,000
	99.1810%	3.9	8190	28%	0.9	720,000
	98.930%	3.8	10770	25%	0.8	750,000
	98.610%	3.7	13900	22%	0.7	780,000
	98.220%	3.6	17800	19%	0.6	810,000
	97.730%	3.5	22700	16%	0.5	840,000
	97.130%	3.4	28700	14%	0.4	860,000
	96.410%	3.3	35900	12%	0.3	880,000
	95.540%	3.2	44600	10%	0.2	900,000
www.GPMAcader	ny.org 94.520%	3.1	54800	8%	0.1	920,000

Conversion Table

Project Charter Casthouse Slab Casting Process Improvement

Business Case:

Business demand continue to increase and the need to optimize the production is vital to the growth of the company and its people. Since the start of its operation Slab Casting never yet reach the full design capacity of 8 drops per day. Key deliverables are; identification of critical factors affecting the slab casting and place a sustainable controls around it. Other benefit will be if not to eliminate but lessen casting aborts and rejects.

VDC1 & VDC2 are not being maximized based on its design capacity. Current production performance is around 300K MT per year with an average of drops of 3.5 per day per VDC. We can cast 135 tons per drop and we have two VDC designed to do 650k tons per year.

Problem Statement:

VDC1 & VDC2 are not working into its maximum capacity of 8 drops per day. There are many factors affecting slab casting activity preventing it to work on its optimum performance.

Goal Statement: (*"SMART"*: Specific, Measurable, Attainable, Relevant, Time bound")

- 1. Increase no. of drops by 42% Or production volume per year by 60%
- 2. Reduce number of cast aborts by 30%

SIGMA Level:

Basis of calculation: 1 cast is considered 60 opportunities (5 slabs x 12 possible reasons for cast aborts). From 2016 total drops of 540 we only produced 2218 good slabs that could have been 2700 slabs.

Baseline Process Capability (Feb '16 to Feb'17) = $-0.3 \sigma Z(LT)$ 1.8 $\sigma Z(ST)$ DPMO 394,950 Defect Rate 61%

Team Members:

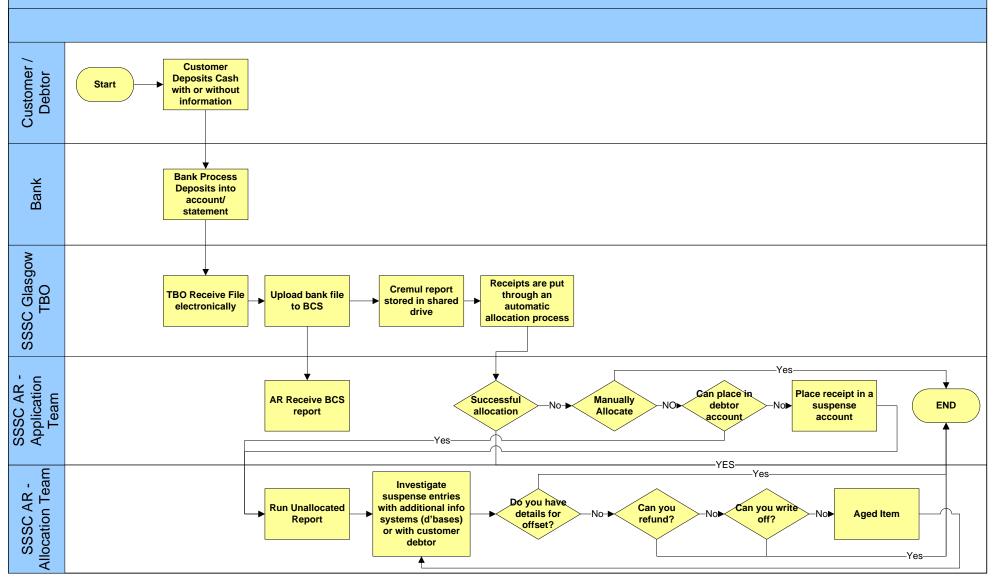
<u></u>		
Name	Role	%
Name	Champion	5%
Name	Sponsor	10%
Name	Project Lead	30%
Name	Team Member	10%
Name	Team Member	10%

Scope (In and Out):

In and Out scope

Process (Starts and Finishes):

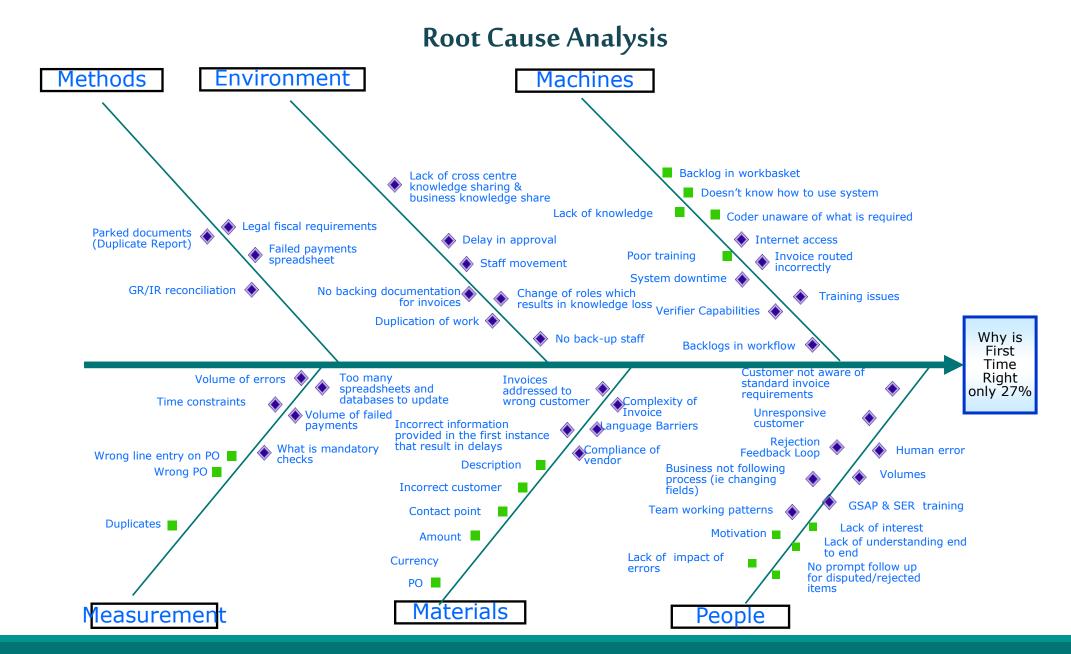
Furnace preparation to bringing slab to Rolling Mill


Estimated Financial Benefit:

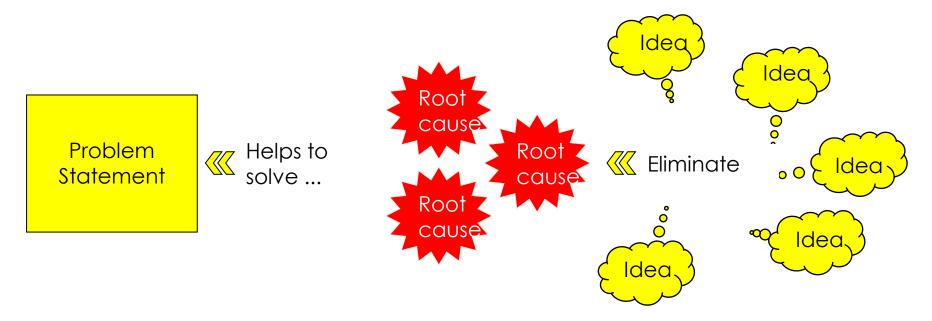
Cost reduction? 25,000 Productivity Enhancement? Increased capacity? 20,000

Phase	Completion Dates	Status
Define	17 Feb	CPT
Measure	30 Mar	CPT
Analyze	15 May	
Improve	01 Jul	
Control	17 Jul	
Realization	16 Aug	

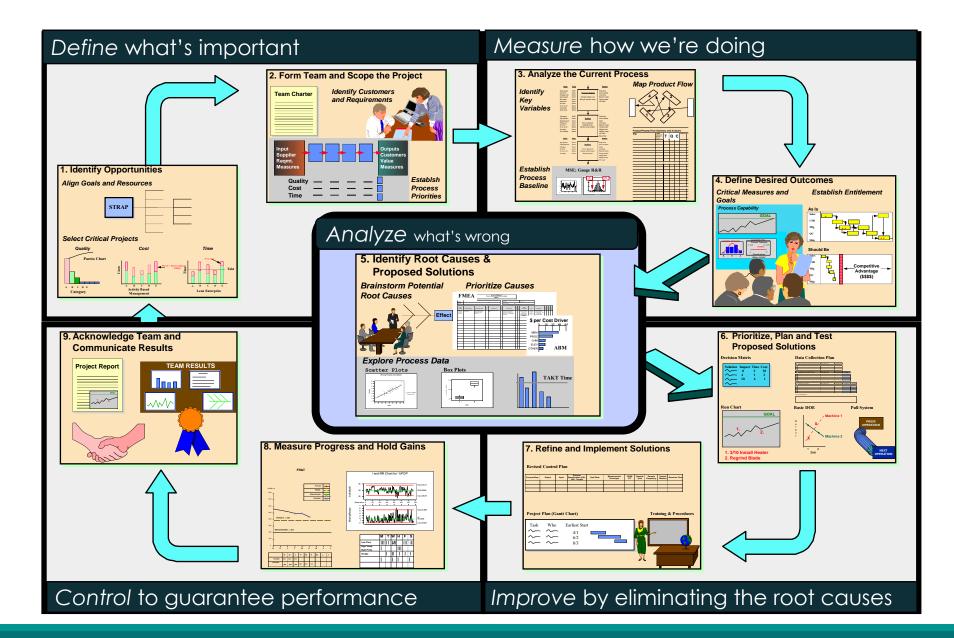
	STATUS Legend
Red	> 2 weeks behind
Yellow Green	1 day – 2 weeks behind
	On Track
CPT	Complete


AR Receipts Application & Allocation - Generic

Relationship between SIPOC and indicators


Start Boundary			End Boundary	
Suppliers	Input		Output	Customers
		100033		

Input indicators	Process indicators	Output indicators
Measures that evaluate the degree to which the inputs to a process, provided by suppliers, are consistent with what the process needs to efficiently and effectively convert into customer- satisfying outputs.	Measures that evaluate the effectiveness, efficiency and quality of the transformation processes – the steps and activities used to convert inputs into customer- satisfying outputs.	Measures that evaluate dimensions of the output – may focus on the performance of the business as well as that associated with the delivery of services and products to customers.


Improve

- •Up to this point, the team has focused on gaining greater levels of understanding of the deviations affecting current operations by defining problem statements
- •After we have verified root cause, we must begin to generate ideas that ultimately will be the solutions to drive process improvement
- •The reduction or elimination of the root causes are the basis for the solutions the team will generate

Control

How would you control your improved processes?

Thank you

Adnan Rafique Ahmed

www.GPMAcademy.org

APPENDIX

White Belt	Vellow Belt	Green Belt	Riack Belt	Master Black Beit	Champion
Understands the structure and goals of Lean Six Sigma Uses basic Lean Six Sigma vocabulary terms Reports process issues to Green and Black Belts	Understands basic Lean Six Sigma concepts Reports process issues to Green Belts and Black Belts Participates on project teams and receives just-in-time training	Starts and manages Lean Six Sigma projects Has Lean Six Sigma expertise but in less detail than Black Belts Provides just-in-time training to others	Can report to a Master Black Belt Has advanced Lean Six Sigma expertise Functions as a coach, mentor, teacher, and project leader for project teams	Works with leaders to identify gaps and select projects Coaches, mentors, teaches, monitors and leads projects Responsible for Lean Six Sigma implementation and culture change	Executive leader who drives the initiative Helps select projects and remove barriers for project teams Supports change and develops a Lean Six Sigma culture